239 research outputs found

    Intrinsic alignment of redMaPPer clusters: cluster shape-matter density correlation

    Get PDF
    We measure the alignment of the shapes of galaxy clusters, as traced by their satellite distributions, with the matter density field using the public redMaPPer catalogue based on Sloan Digital Sky Survey–Data Release 8 (SDSS-DR8), which contains 26 111 clusters up to z ∼ 0.6. The clusters are split into nine redshift and richness samples; in each of them, we detect a positive alignment, showing that clusters point towards density peaks. We interpret the measurements within the tidal alignment paradigm, allowing for a richness and redshift dependence. The intrinsic alignment (IA) amplitude at the pivot redshift z = 0.3 and pivot richness λ = 30 is AgenIA=12.6+1.5−1.2 AIAgen=12.6−1.2+1.5 . We obtain tentative evidence that the signal increases towards higher richness and lower redshift. Our measurements agree well with results of maxBCG clusters and with dark-matter-only simulations. Comparing our results to the IA measurements of luminous red galaxies, we find that the IA amplitude of galaxy clusters forms a smooth extension towards higher mass. This suggests that these systems share a common alignment mechanism, which can be exploited to improve our physical understanding of IA

    KiDS-i-800: Comparing weak gravitational lensing measurements in same-sky surveys

    Get PDF
    We present a weak gravitational lensing analysis of 815 square degree of ii-band imaging from the Kilo-Degree Survey (KiDS-ii-800). In contrast to the deep rr-band observations, which take priority during excellent seeing conditions and form the primary KiDS dataset (KiDS-rr-450), the complementary yet shallower KiDS-ii-800 spans a wide range of observing conditions. The overlapping KiDS-ii-800 and KiDS-rr-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis, we introduce two new `null' tests. The `nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-ii-800 and KiDS-rr-450 shear measurements agree at the level of 1±41 \pm 4\%. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy lensing signal from the full KiDS-ii-800 and KiDS-rr-450 surveys and find that the measurements agree to 7±57 \pm 5\% when the KiDS-ii-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.Comment: 24 pages, 20 figures. Submitted to MNRAS. Comments welcom

    The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

    Get PDF
    We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift z0.8z\sim0.8 and over a volume of nearly 0.1~Gpc3^3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by 60000\sim60\,000 secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at Mh,peak=1.90.1+0.2×1012MM_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times10^{12} M_{\odot} with an amplitude of 0.0250.025, which decreases to 0.001\sim0.001 for massive halos (Mh>1014MM_{\rm h} > 10^{14} M_{\odot}). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to z=1z=1: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (M<1011M{M}_{\star} < 10^{11} M_{\odot}) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.Comment: 31 pages, 18 figures, 4 table. Accepted for publication in MNRAS. Online material available at http://www.cfhtlens.or

    Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia

    Get PDF
    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.Peer reviewe

    CFHTLenS: mapping the large-scale structure with gravitational lensing

    Get PDF
    We present a quantitative analysis of the largest contiguous maps of projected mass density obtained from gravitational lensing shear. We use data from the 154 deg^2 covered by the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). Our study is the first attempt to quantitatively characterize the scientific value of lensing maps, which could serve in the future as a complementary approach to the study of the dark universe with gravitational lensing. We show that mass maps contain unique cosmological information beyond that of traditional two-point statistical analysis techniques. Using a series of numerical simulations, we first show how, reproducing the CFHTLenS observing conditions, gravitational lensing inversion provides a reliable estimate of the projected matter distribution of large-scale structure. We validate our analysis by quantifying the robustness of the maps with various statistical estimators. We then apply the same process to the CFHTLenS data. We find that the two-point correlation function of the projected mass is consistent with the cosmological analysis performed on the shear correlation function discussed in the CFHTLenS companion papers. The maps also lead to a significant measurement of the third-order moment of the projected mass, which is in agreement with analytic predictions, and to a marginal detection of the fourth-order moment. Tests for residual systematics are found to be consistent with zero for the statistical estimators we used. A new approach for the comparison of the reconstructed mass map to that predicted from the galaxy distribution reveals the existence of giant voids in the dark matter maps as large as 3° on the sky. Our analysis shows that lensing mass maps are not only consistent with the results obtained by the traditional shear approach, but they also appear promising for new techniques such as peak statistics and the morphological analysis of the projected dark matter distribution

    Intrinsic galaxy shapes and alignments I: Measuring and modelling COSMOS intrinsic galaxy ellipticities

    Get PDF
    The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak lensing surveys, as well as to the calibration of weak lensing shape measurements. We construct such models based on the halo properties of the Millennium Simulation and confront them with a sample of 90,000 galaxies from the COSMOS Survey, covering three decades in luminosity and redshifts out to z=2. The ellipticity measurements are corrected for effects of point spread function smearing, spurious image distortions, and measurement noise. Dividing galaxies into early, late, and irregular types, we find that early-type galaxies have up to a factor of two lower intrinsic ellipticity dispersion than late-type galaxies. None of the samples shows evidence for redshift evolution, while the ellipticity dispersion for late-type galaxies scales strongly with absolute magnitude at the bright end. The simulation-based models reproduce the main characteristics of the intrinsic ellipticity distributions although which model fares best depends on the selection criteria of the galaxy sample. We observe fewer close-to-circular late-type galaxy images in COSMOS than expected for a sample of randomly oriented circular thick disks and discuss possible explanations for this deficit.Comment: 18 pages, 8 figures; updated simulations and galaxy sample definition, more galaxy samples analysed; matches version published in MNRA

    Dark Matter Halo Environment for Primordial Star Formation

    Full text link
    We study the statistical properties (such as shape and spin) of high-z halos likely hosting the first (PopIII) stars with cosmological simulations including detailed gas physics. In the redshift range considered (11<z<1611 < z < 16) the average sphericity is =0.3±0.1 = 0.3 \pm 0.1, and for more than 90% of halos the triaxiality parameter is T0.4T \lesssim 0.4, showing a clear preference for oblateness over prolateness. Larger halos in the simulation tend to be both more spherical and prolate: we find sMhαss \propto M_h^{\alpha_s} and TMhαTT \propto M_h^{\alpha_T}, with αs0.128\alpha_s \approx 0.128 and αT=0.276\alpha_T= 0.276 at z = 11. The spin distributions of dark matter and gas are considerably different at z=16z=16, with the baryons rotating slower than the dark matter. At lower redshift, instead, the spin distributions of dark matter and gas track each other almost perfectly, as a consequence of a longer time interval available for momentum redistribution between the two components. The spin of both the gas and dark matter follows a lognormal distribution, with a mean value at z=16 of =0.0184 =0.0184, virtually independent of halo mass. This is in good agreement with previous studies. Using the results of two feedback models (MT1 and MT2) by McKee & Tan (2008) and mapping our halo spin distribution into a PopIII IMF, we find that at high-zz the IMF closely tracks the spin lognormal distribution. Depending on the feedback model, though, the distribution can be centered at 65M\approx 65 M_\odot (MT1) or 140M\approx 140 M_\odot (MT2). At later times, model MT1 evolves into a bimodal distribution with a second prominent peak located at 3540M35-40 M_\odot as a result of the non-linear relation between rotation and halo mass. We conclude that the dark matter halo properties might be a key factor shaping the IMF of the first stars.Comment: 10 pages, 6 figures, accepted for publication in MNRA

    KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing

    Get PDF
    We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ∼450 deg2 of imaging data from the Kilo Degree Survey (KiDS). For a flat Λ cold dark matter (ΛCDM) cosmology with a prior on H0 that encompasses the most recent direct measurements, we find S8≡σ8Ωm/0.3−−−−−−√=0.745±0.039⁠. This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S8 and ‘substantial discordance’ in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved ‘self-calibrating’ version of lensFIT validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl

    CFHTLenS: weak lensing calibrated scaling relations for low-mass clusters of galaxies

    Get PDF
    We present weak lensing and X-ray analysis of 12 low-mass clusters from the Canada-France-Hawaii Telescope Lensing Survey and XMM-CFHTLS surveys. We combine these systems with high-mass systems from Canadian Cluster Comparison Project and low-mass systems from Cosmic Evolution Survey to obtain a sample of 70 systems, spanning over two orders of magnitude in mass. We measure core-excised LX-TX, M-LX and M-TX scaling relations and include corrections for observational biases. By providing fully bias-corrected relations, we give the current limitations for LX and TX as cluster mass proxies. We demonstrate that TX benefits from a significantly lower intrinsic scatter at fixed mass than LX. By studying the residuals of the bias-corrected relations, we show for the first time using weak lensing masses that galaxy groups seem more luminous and warmer for their mass than clusters. This implies a steepening of the M-LX and M-TX relations at low masses. We verify the inferred steepening using a different high-mass sample from the literature and show that variance between samples is the dominant effect leading to discrepant scaling relations. We divide our sample into subsamples of merging and relaxed systems, and find that mergers may have enhanced scatter in lensing measurements, most likely due to stronger triaxiality and more substructure. For the LX-TX relation, which is unaffected by lensing measurements, we find the opposite trend in scatter. We also explore the effects of X-ray cross-calibration and find that Chandra calibration leads to flatter LX-TX and M-TX relations than XMM-Newto

    KiDS+GAMA: cosmology constraints from a joint analysis of cosmic shear, galaxy–galaxy lensing, and angular clustering

    Get PDF
    We present cosmological parameter constraints from a joint analysis of three cosmological probes: the tomographic cosmic shear signal in ∼450 deg2 of data from the Kilo Degree Survey (KiDS), the galaxy-matter cross-correlation signal of galaxies from the Galaxies And Mass Assembly (GAMA) survey determined with KiDS weak lensing, and the angular correlation function of the same GAMA galaxies. We use fast power spectrum estimators that are based on simple integrals over the real-space correlation functions, and show that they are practically unbiased over relevant angular frequency ranges. We test our full pipeline on numerical simulations that are tailored to KiDS and retrieve the input cosmology. By fitting different combinations of power spectra, we demonstrate that the three probes are internally consistent. For all probes combined, we obtain S8≡σ8Ωm/0.3−−−−−−√=0.800+0.029−0.027⁠, consistent with Planck and the fiducial KiDS-450 cosmic shear correlation function results. Marginalizing over wide priors on the mean of the tomographic redshift distributions yields consistent results for S8 with an increase of 28percent in the error. The combination of probes results in a 26 per cent reduction in uncertainties of S8 over using the cosmic shear power spectra alone. The main gain from these additional probes comes through their constraining power on nuisance parameters, such as the galaxy intrinsic alignment amplitude or potential shifts in the redshift distributions, which are up to a factor of 2 better constrained compared to using cosmic shear alone, demonstrating the value of large-scale structure probe combination
    corecore